
Frames, Layers,
and the Shell
Game

The DOM and JavaScript make it possible for the contents
of a browser page to resemble closely the interactivity

and responsiveness of any other application on your desktop.
When you see a file listing on your desktop, you can show or
hide the files and folders within a given directory. Text can
move about on the screen without the use of animated GIF
files or specialized plug-ins and applets. With the DOM and
JavaScript, you can simulate these types of dynamic responses
to user interaction or create spontaneous behavior.

Defining Hidden Text
JavaScript is a powerful language. JavaScript enables you to
define HTML elements right from the script, even if you don’t
define those elements in your HTML body. This probably isn’t
the way you want to do things, however. Why not?

✦ Writing the page takes longer

✦ Maintaining the page is more difficult

✦ Testing the page is more difficult

An easier way to create hidden text is to include anything you
want hidden right in your HTML and then to define it with a
style of display: none.

<DIV CLASS=”leveltwo” STYLE=”display:none”>
<H1>Defining Hidden Text</H1>
<H2>Bringing hidden text into view</H2>
<H2>Designing an interactive table of contents
</H2>
<H2>Dynamically modifying styles</H2>
</DIV>

4949C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Showing elements

Hiding elements

Collapsible text

Moving elements

Useful object
detection

✦ ✦ ✦ ✦

3473-4 ch49.f.qc 7/25/00 13:20 Page 557

558 Part VII ✦ Using Cross-Browser Dynamic HTML

In this example, these four lines of H1 text will not appear until the display property
is set to something other than none.

Bringing hidden text into view
To make your hidden text display, all you do is turn the display property of the DIV
element that contains your hidden text to “visible” or “” (empty quotes). The
following JavaScript turns the previous hidden text into visible text or visible text
into hidden text. In the first line, an if statement tests to see whether the element
is visible. If the text is visible (style.display==””), then JavaScript makes the
text invisible. If the text is invisible (style.display==”none”), then JavaScript
sets the text to be visible.

if (thisChild.style.display == “”) {
thisChild.style.display = “none”; }
else {
thisChild.style.display = “”; }

Note that thisChild is the variable name assigned to the H2 entries listed in the pre-
ceding example.

Designing an interactive table of contents
In the following example, the table of contents dynamically shows and hides sec-
tion headings from Chapter 48 and this chapter. Figures 49-1 and 49-2 show exam-
ples of the table of contents fully collapsed and fully revealed.

Figure 49-1: The table of contents collapsed

3473-4 ch49.f.qc 7/25/00 13:20 Page 558

559Chapter 49 ✦ Frames, Layers, and the Shell Game

Figure 49-2: The table of contents with all text visible

The HTML used to accomplish the results shown in the preceding figures is as
follows:

<HTML>
<HEAD>
<TITLE>Dynamic Contents</TITLE>
<STYLE TYPE=”text/css”>

H1 {
color: blue;
font-size:18pt;
}

H2 {
color: black;
font-size: 12pt;
}

DIV.leveltwo {
margin-left: 0.5in;
}
</STYLE>
<SCRIPT Language=”JavaScript”>
<!--
... script goes here ...
-->
</SCRIPT>
</HEAD>
<BODY>
<DIV class=”levelone” STYLE=”position:absolute; width:550”>

3473-4 ch49.f.qc 7/25/00 13:20 Page 559

560 Part VII ✦ Using Cross-Browser Dynamic HTML

<DIV> <!-- although this DIV has no apparent purpose, it needs
to be here -->
<H1 onMouseOver=”onLevelOne(this);”
onMouseOut=”notOnLevelOne(this);”
onClick=”hideContents(this);”>Chapter 49: Building Dynamic

Forms</H1>
<DIV CLASS=”leveltwo” STYLE=”display:none”>

<H2>Form Objects and Events</H2>
<H2>The Form</H2>
<H2>Testing for Valid Input</H2>
<H2>Making Parts of Forms Appear or Disappear</H2>
<H2>Resources</H2>

</DIV>
</DIV> <!-- close for DIV with no apparent purpose -->
<DIV> <!-- DIV with no apparent purpose -->
<H1 onMouseOver=”onLevelOne(this);”
onMouseOut=”notOnLevelOne(this);”
onClick=”hideContents(this);”>Chapter 50: Creating

Interactive Documents</H1>
<DIV CLASS=”leveltwo” STYLE=”display:none”>

<H2>Defining Hidden Text</H2>
<H2>Bringing Hidden Text Into View</H2>
<H2>Designing an Interactive Table of Contents</H2>
<H2>Dynamically Modifying Styles</H2>
<H2>The Script</H2>

</DIV>
</DIV> <!-- close for DIV with no apparent purpose -->
</DIV> <!-- close for levelone DIV -->
</BODY>
</HTML>

Note these few things about the preceding HTML:

✦ The styles are defined right in the HEAD, rather than in a separate style sheet.

✦ The script is missing. Because this requires its own explanation, it will be
outlined later in this chapter.

✦ Everything is contained in DIV elements. You can pretty much divide the page
into a series of nested DIV elements. This is important to the way formatting
works, as well as in the way text is made to appear and disappear. In fact, if
you strip out all the rest of the content, you have the following sets of DIV
elements:

<DIV class=”levelone”>

<DIV>

<DIV class=”leveltwo”>

</DIV>

</DIV>

3473-4 ch49.f.qc 7/25/00 13:20 Page 560

561Chapter 49 ✦ Frames, Layers, and the Shell Game

<DIV>

<DIV class=”leveltwo”>

</DIV>

</DIV>

</DIV>

✦ Some of the DIVs have no apparent purpose. We want to give you a good
explanation for why they are needed, but we can’t. This script simply won’t
work properly without them.

✦ The H1 elements have three event handlers on them: onMouseOver(),
onMouseOut(), and onClick(). The first event handler, onMouseOver(),
enables your script to do something when the mouse is over the contents of
the H1 element — in this case, change the text color. The second event handler,
onMouseOut(), enables your script to do something when the mouse is no
longer over the contents of the H1 element — in this case, return to the original
text color. The final event handler, onClick(), is the one you are most used to
seeing. It actually calls the function that shows or hides the contents.

✦ This example includes the actual text that will show and hide. It would be
more common actually to pull the text to be used in this table of contents
from an external file or database. Exactly how you would do this depends on
the technology you are using, which would be specific to your Web server.

Dynamically modifying styles
The presence of the onMouseOver() and onMouseOut() event handlers in the previ-
ous HTML suggest we can make changes to the contents of those elements or to
other elements on the page based on where the mouse is. In fact, what we do in this
example is change the color and decoration of the text in the H1 elements. Of course,
you could change anything about the styles of the H1 elements.

The style definition of the H1 element is as follows:

H1 {
color: blue;
font-size:18pt;
}

Changing the value of the color property to red and adding a text decoration of
underline is easily accomplished in JavaScript:

function onLevelOne(el){
el.style.color = “red”;
el.style.textDecoration = “underline”;
return;

}

3473-4 ch49.f.qc 7/25/00 13:20 Page 561

562 Part VII ✦ Using Cross-Browser Dynamic HTML

Changing the style back to the original style is just as simple:

function notOnLevelOne(el){
el.style.color = “blue”;
el.style.textDecoration = “none”;
return;

}

The script
Finally, here is the entire JavaScript you need to include in the SCRIPT element in
the previous HTML. Most of it should look familiar.

function onLevelOne(el){
el.style.color = “red”;
el.style.textDecoration = “underline”;
return;

}
function notOnLevelOne(el){
el.style.color = “blue”;
el.style.textDecoration = “none”;
return;

}
function hideContents(el){
var elParent = el.parentElement;
var childrenCount = elParent.children.length;
var thisChild = 0;
for(i = 0; i<childrenCount; i++){

thisChild = elParent.children(i);
if (thisChild != el){

if (thisChild.style.display == “”)
thisChild.style.display = “none”;

else
thisChild.style.display = “”;

}
}
return;

}

The only function that should look unfamiliar to you is hideContents(). This func-
tion loops through all the children of the element that calls it (this means it loops
through all the DIV elements nested within the DIV element of the element that
calls it) and changes the display property for each one.

As mentioned in the previous two chapters, JavaScript and the implementation of
the DOM vary for Microsoft Internet Explorer and Netscape Navigator. This example
only works properly in Internet Explorer 4 and higher.

3473-4 ch49.f.qc 7/25/00 13:20 Page 562

563Chapter 49 ✦ Frames, Layers, and the Shell Game

Moving Layers
We’ve played with hiding and displaying layers. Now let’s see about moving one
around on the screen. Microsoft includes a script on the DHTML section of their
Web Workshop (under Positioning) called glide.html. This script shows how to
move a layer across a page using JavaScript and the Microsoft DOM. The script can
be found at http://msdn.microsoft.com/workshop/Author/dhtml/dhtml.asp

<HTML>
<HEAD><TITLE>Glide the DIV</TITLE>
<SCRIPT LANGUAGE=”javascript”>
var action;
function StartGlide() {

Banner.style.pixelLeft = document.body.offsetWidth;
Banner.style.visibility = “visible”;
action = window.setInterval(“Glide()”,50);

}
function Glide() {

document.all.Banner.style.pixelLeft -= 10;
if (Banner.style.pixelLeft<=0) {

Banner.style.pixelLeft=0;
window.clearInterval(action);

}
}
</SCRIPT>
</HEAD>
<STYLE type=”text/css”>
DIV {
visibility:hidden;
position:absolute;
top:0;
left:0
}
</STYLE>
<BODY onload=”StartGlide()”>
<P>With dynamic positioning, you can move elements and their
content anywhere in the document even after the document has
loaded!
<DIV ID=”Banner”>Welcome to Dynamic HTML!</DIV>
</BODY>
</HTML>

This page works exactly as designed — but only on Internet Explorer (see Figure
49-3). On other JavaScript-enabled browsers that don’t share the Microsoft DOM,
the script does nothing or generates errors for the user (see Figures 49-4 and 49-5).
Simply being inoperable is okay for the majority of users. Causing errors is to be
avoided at all costs.

3473-4 ch49.f.qc 7/25/00 13:20 Page 563

564 Part VII ✦ Using Cross-Browser Dynamic HTML

Figure 49-3: Glide.html, as created by Microsoft, works well on Internet Explorer.

Figure 49-4: The same script creates errors in other browsers such as
Netscape Navigator 4.5.

3473-4 ch49.f.qc 7/25/00 13:20 Page 564

565Chapter 49 ✦ Frames, Layers, and the Shell Game

Figure 49-5: Other JavaScript-aware applications also break.

Creating cross-browser HTML
We need to work on making this script cross-browser compatible. We’ll start with
the HTML, which seems to put the page in reverse order. To make the elements
stand out, we’ll make the last line into an H1 heading. All of the style information
is also a little unnecessary, so we’ll remove it and place an inline style attribute for
absolute positioning.

Absolute positioning is required for dynamic placement of objects on a page.

<BODY onload=”StartGlide()”>
<DIV id=Banner style=”position:absolute”>
<H1>Welcome to Dynamic HTML!</H1>
</DIV>
<P style=”position:absolute;top:50”>With dynamic positioning,
you can move elements and their content anywhere in the
document even after the document has loaded!
</BODY>

Now, we need to go to work on the scripts. We’ll add a variable declaration called
divBanner to the top of the script declaration. This is the object that will be used
to represent the layer during execution. It needs to be global to the script, so we
place it outside both function declarations.

Tip

3473-4 ch49.f.qc 7/25/00 13:20 Page 565

566 Part VII ✦ Using Cross-Browser Dynamic HTML

DOM object detection
The new divBanner variable becomes very important as we take a look at the
opening lines of code for script declaration.

if (document.all) {
divBanner = document.all.Banner.style; //Line 10
} else if (document.layers) {
divBanner = document.Banner;
} else {
return;
}

Here’s where we start detecting the environment to see what kind of browser we’re
working with. The Microsoft DOM includes objects from the body of the document
under document.all. The first line checks for the existence of this object, and if it
exists, assigns divBanner to the value of the object. In essence, this creates another
handle we can use to manipulate the banner. The trailing style object is used by
the Microsoft DOM as a prefix to the various style attributes of the object. Because
all we’ll be manipulating with this object is its style, we add it, also.

If the document.all object isn’t valid, chances are we’re working in a Netscape-
compatible environment. Netscape doesn’t use the all or style objects. It just
appends the name of the object to document.

These are the only two current valid document objects to represent Banner. If nei-
ther of these shoes fit, then we should exit the function before doing anything else.
All script execution will end at this point if neither of the DOM objects were
detected.

Setting the initial position
Next, we need to determine where the right side of the screen is so we can position
the left side of the banner at its starting point. Again, the Netscape and Microsoft
DOMs differ on how to do this, so we use JavaScript’s conditional assignment fea-
ture, checking to see which value is valid.

// if the document.body object exists...
divBanner.left = (document.body) ?
document.body.offsetWidth : window.innerWidth;
// use the MS DOM otherwise, use the NS DOM

Once this line executes, the left side of the banner is placed at the far left of the
screen (out of sight). The next line sets the wheels in motion.

action = window.setInterval(“Glide()”,50);

3473-4 ch49.f.qc 7/25/00 13:20 Page 566

567Chapter 49 ✦ Frames, Layers, and the Shell Game

The action object becomes a metronome that executes the Glide function every
50 milliseconds until it’s stopped.

Moving the object
There’s one last bit of detail to take care of. In the two DOMs, there are two meth-
ods for moving objects. The Microsoft way is to decrement the pixelLeft property,
while Netscape uses a method called moveBy. We check for the existence of the
body object to determine if we’re in a Microsoft browser, and if not, we use the
Netscape method.

if (document.body) {
divBanner.pixelLeft -= 10;

} else {
divBanner.moveBy(-10,0);

}

As the last action, we see if we’ve reached the left side of the window yet. If so, then
the action object is disengaged and script execution stops. This new version of the
script is only eight lines longer than the original. It still accomplishes the same pur-
pose on Internet Explorer (see Figure 49-6), but now it also works on Netscape
Navigator (see Figure 49-7), and it doesn’t break StarOffice (see Figure 49-8).

Figure 49-6: Glide-crossbrowse.html still works as intended on Internet Explorer.

3473-4 ch49.f.qc 7/25/00 13:20 Page 567

568 Part VII ✦ Using Cross-Browser Dynamic HTML

Figure 49-7: The same script, with object detection, also works on Navigator.

Figure 49-8: Although the dynamic movement doesn’t happen, the page still
displays in its final intended form without errors on StarOffice.

3473-4 ch49.f.qc 7/25/00 13:20 Page 568

569Chapter 49 ✦ Frames, Layers, and the Shell Game

<HTML>
<HEAD>
<TITLE>Glide the DIV</TITLE>
<SCRIPT LANGUAGE=”javascript”>
var action;
var divBanner;
function StartGlide() {

if (document.all) {
divBanner = document.all.Banner.style;
} else if (document.layers) {

divBanner = document.Banner;
} else {

return;
}
divBanner.left = (document.body) ?

document.body.offsetWidth : window.innerWidth;
divBanner.visibility = “visible”;
action = window.setInterval(“Glide()”,50);

}
function Glide() {

if (document.body) {
divBanner.pixelLeft -= 10;
} else {

divBanner.moveBy(-10,0);
}
if ((divBanner.left<=0) || (divBanner.pixelLeft<=0)) {

divBanner.left=0;
window.clearInterval(action);

}
}
</SCRIPT>
</HEAD>
<BODY onload=”StartGlide()”>

<H1>Welcome to Dynamic HTML!</H1>

<P style=”position:absolute;top:50”>With dynamic positioning,
you can move elements and their content anywhere in the
document even after the document has loaded!
</BODY>

Macromedia Dreamweaver is a fine software tool for creating DHTML effects, such
as moving text. The code Dreamweaver creates for events and moving elements is
cross-browser compatible. If you’re going to be doing a lot with DHTML, Dream-
weaver is the tool to have.

From Here
Want to change styles with DHTML? Move ahead to Chapter 50.Cross-

Reference

Tip

3473-4 ch49.f.qc 7/25/00 13:20 Page 569

570 Part VII ✦ Using Cross-Browser Dynamic HTML

Summary
In this chapter, you saw a simple example of a collapsible table of contents, along
with a cross-browser version of moving text. Some of the properties should have
looked familiar to you, but you saw them used in new ways. The complete working
examples in this chapter can be used as a jumping-off point for your own dynamic
Web pages.

With all this exposure to JavaScript, you are well-armed to make your pages dance.
If you want to script your pages to the hilt, though, be well-advised to consult the
resources on the Web for additional techniques and pitfalls waiting for you. Scripting
exclusively for one browser may be easier, but your efforts will go unappreciated by
a great many viewers.

✦ ✦ ✦

3473-4 ch49.f.qc 7/25/00 13:20 Page 570

